III.B.2.N.e.7. VACCINIUM FORMOSUM - VACCINIUM FUSCATUM SEASONALLY FLOODED SHRUBLAND ALLIANCE

Southern Highbush Blueberry - Black Highbush Blueberry Seasonally Flooded

Shrubland Alliance

Physiognomic Class Shrubland (III.)

Physiognomic Subclass
Physiognomic Group
Physiognomic Subgroup
Physiognomic Subgroup
Physiognomic Subgroup
Physiognomic Subgroup
Natural/Semi-natural (III.B.2.)

Formation Seasonally flooded cold-deciduous shrubland (III.B.2.N.e.)

Alliance VACCINIUM FORMOSUM - VACCINIUM FUSCATUM FLOODED

SHRUBLAND ALLIANCE (III.B.2.N.e.7)

Vaccinium corymbosum - Rhododendron viscosum - Clethra alnifolia Shrubland

Highbush Blueberry - Swamp Azalea - Coastal Sweet-pepperbush Shrubland

CLASSIFICATION CONFIDENCE LEVEL: 2

USFS WETLAND SYSTEM: PALUSTRINE

RANGE:

Fire Island National Seashore

This association occurs in small basin wetlands in the interdunes of Fire Island.

Globally

This vegetation occurs primarily on the coastal plain from Delaware to Massachusetts. It also occurs in scattered inland locales in southern New England.

ENVIRONMENTAL SETTING:

Fire Island National Seashore

This community occurs in a small saturated basin riddled with swale microtopography. The substrate is dark silt loam over sand.

Globally

This vegetation occurs in seasonally flooded basins with shallow organic accumulation over sands, often at margins of coastal plain ponds.

MOST ABUNDANT SPECIES:

Fire Island National Seashore

<u>Stratum</u> <u>Species</u>

Shrub Amelanchier canadensis, Rhododendron viscosum, Vaccinium

corymbosum

Herbaceous Triadenum virginicum, Trientalis borealis Vine / liana Smilax rotundifolia, Smilax glauca

Globally

Stratum Species

Shrub Vaccinium corymbosum, Rhododendron viscosum, Ilex glabra, Clethra

alnifolia

Herbaceous Woodwardia virginica, Osmunda cinnamomea

CHARACTERISTIC SPECIES:

Fire Island National Seashore

Rhododendron viscosum, Vaccinium corymbosum

Globally

Vaccinium corymbosum, Clethra alnifolia and Chamaedaphne calyculata

VEGETATION DESCRIPTION:

Fire Island National Seashore

This association is a dense shrub thicket with *Amelanchier canadensis*, *Clethra alnifolia*, *Viburnum dentatum*, *Aronia arbutifolia*, *Ilex verticillata*, *Acer rubrum*, *Rhododendron viscosum*, and *Vaccium corymbosum* draped with vines, such as *Smilax rotundifolia* and *S. glauca*. The herbaceous layer is sparse with *Triadenum virginianum* and *Thelypteris palustris*, which are more abundant in swales. Dowhan and Rozsa (1989) also list *Sambucus canadensis* as an occasional associate, and *Lyonia ligustrina* as rare in wet thickets.

Globally

This coastal shrub swamp occurs in seasonally flooded basins with shallow organic accumulation over sands. Characteristic shrub species are *Vaccinium corymbosum*, *Clethra alnifolia*, *Rhododendron viscosum*, *Ilex glabra*. Other associates include *Leucothoe racemosa*, *Lyonia ligustrina*, *Decodon verticillatus*, *Cephalanthus occidentalis*, *Kalmia angustifolia*, *Myrica gale*, and *Aronia* species. The herbaceous layer is poorly developed but may include *Woodwardia virginica*, *Triadendum virginicum*, and *Acer rubrum* seedlings. *Sphagnum viridum* and other *Sphagnum* mosses are also characteristic, forming a shallow mat over mineral soils.

COMMENTS:

Fire Island National Seashore

This community occurrence is representative of the wet end of the spectrum for the type.

Globally

Related to *Vaccinium corymbosum / Sphagnum* spp. Shrubland CEGL006190 (*Vaccinium corymbosum* Saturated Shrubland Alliance III.B.2.N.g.5) which is more characteristic of bogs with deep peat and relatively stable water levels. *Chamaedahpne calyculata* and *Sphagnum* species of wetter environments are more characteristic of CEGL006190.

States/Provinces: CT:S?, DE?, MA:S?, NJ:S?, NY:S?, RI:S?

OTHER NOTEWORTHY SPECIES:

CONSERVATION RANK: G? (98-04-14)
DATABASE CODE: CEGL006137
MAP UNITS: FIIS plot 45

REFERENCES: Conard 1935 Dowhan and Rozsa 1989 Golet 1973 Johnson 1981 Lynn and Karlin 1985 Niering and Egler 1966 Reschke 1990 Schall and Murley 1984